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Abstract

An efficient O(mN) algorithm for dynamic simulation of simple closed-chain robotic mechanisms will
be presented in this paper, where m is the number of chains, and N is the number of degrees of
freedom for each chain. It is based on computation of the operational space inertia matrix (6 x 6)

for each chain as seen by the body, load, or object. Also, computation of the chain dynamics, when

opened at one end, is required, and the most efficient algorithm is used for this purpose. Parallel
implementation of the dynamics for each chain results in an O(N) + O(log 2 m+ 1) algorithm.

I. Introduction

Recently, there has been an increasing interest in robotic systems with multiple chains forming simple
closed kinematic loops. Such systems of interest in space robotics applications include multilegged

vehicles, multiple manipulators, and dexterous hands. Each is characterized by multiple chains of

links (legs, arms, or fingers) in support of a body, load, or object. Real-time simulation of these

systems is important for remote operation, but difficult to achieve at present. An even greater

challenge to the computational engineer is that of super-real-time simulation, that is, planning seconds
of motion in milliseconds. This has been shown to be of value in the control of a multilegged vehicle

when predicting the action of the present control to ensure safety and stability along a planned

trajectory.

The fundamental goal of this paper is the development of an efficient algorithm for the dynamic sim-

ulation of the time-varying topological systems discussed above. Previous researchers have presented

algorithms for these and similar configurations based on equation augmentation [1], constraint prop-

agation [2], and recursive computation [3,4], but these methods are often difficult to apply and/or
computationally inefficient. The new simulation algorithm derived here makes use of efficient com-

putations for the individual supporting chains to produce an efficient simulation method for the

complete robot system. The dynamic properties of each chain are described in a simple, physically
understandable manner, which facilitates the straightforward analysis of the combined dynamics of
the entire mechanism.

Multiple chain robotic systems can take many forms, some of them quite complex. Simple closed-
chain mechanisms are a subset of multiple chain systems with specific structural characteristics. The

structure of a simple closed-chain mechanism is characterized by m actuated chains which support a

single common reference member [1]. A supporting chain is identified as an independent functional
unit in the closed chain system which has two ends, each terminated by a single link. Each chain

may have an arbitrary number of links and degrees of freedom, and closed kinematic loops within
a chain are permitted. The removal of the reference member breaks the closed loops formed by the

multiple chains.
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Figure 1: Example of a Type 0 Simple Closed-Chain Mechanism
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Figure 2: Example of a Type 1 Simple Closed-Chain Mechanism

There are two basic types of simple closed-chain mechanisms called Type 0 and Type 1, respectively
[1]. These two types are defined based on the nature of the interactions which occur between the

links of each chain and the reference member or support surface. Figure 1 illustrates a typical Type
0 mechanism which may be used to model multiple manipulators or dexterous hands. Note that the

support surface, shown here as a fixed inertial frame for a multiple manipulator configuration, might

also represent the moving "palm" of a dexterous hand. In either case, for a Type 0 mechanism, the

base link of each chain is connected to the support surface by an actuated joint structure, while the
last link interacts with the reference member through an unpowered contact. Figure 2 illustrates a

Type 1 simple closed-chain mechanism which may be used to model multilegged vehicles. For a Type

1 mechanism, the last link of each chain interacts with the support surface through an unpowered
contact, while the base link is connected to the reference member by an actuated joint structure. For

both Type 0 and Type 1 mechanisms, the reference member (object, load, or body) is numbered 0,
while the chains are numbered arbitrarily from 1 to m. Chain k (k = 1,..., m) has Nk degrees of

freedom, where Nk may be less than, equal to, or greater than 6.

In order to apply the same algorithm to both types in this work, the support surface will be considered

to act as the "base" of each chain. We will refer to the terminal link which interacts with the support
surface as link 1, and the terminal link which interacts with the reference member will be called the

last link or end effector (link N). The far end of link N is the "tip" of the chain. The interactions

and connections which occur between bodies or links in the system (including those at the support

surface and at the reference member) will be described using the general joint model of [5,6]. This
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includes both powered joint structures and unpowered contacts. The motion of the support surface

is assumed to be known.

In this paper, an O(mN) recursive algorithm for the dynamic simulation of simple closed-chain
mechanisms is derived for rn chains with N degrees of freedom each. The algorithm is based on the

efficient computation of the (6 x 6) operational space inertia matrix [7] for each chain as seen by the

body, load, or object. The operational space inertia matrix, A, may be used to obtain the net effect
of the chain dynamics at its tip. The computation of the chain dynamics when the chain is open
at one end is also required, and the most efficient algorithm is used for this purpose. Given O(N)

algorithms for these two fundamental computations for each chain [4,5,8,9], an O(mN) algorithm for
the simulation of the entire multiple chain system is formulated.

In the next section, the notational and modelling conventions used in the formulation of the new

algorithm are summarized. In the third section, the dynamic properties of the individual supporting
chains and the common reference member are discussed, and the appropriate dynamic equations

are developed. The operational space inertia matrix and the open-chain dynamics of each chain

are of special significance in this discussion. In the fourth section, the O(mN) dynamic simulation

algorithm for simple closed-chain mechanisms is derived. The final algorithm is presented as a series
of five steps, which are summarized in a convenient tabular form. The computational requirements

of the new algorithm, including parallel implementation considerations, are presented in the fifth
section. Finally, the results of this work are summarized and some overall conclusions are given in

the final section.

II. Notation

Many of the notational conventions used in this paper are based on concepts introduced by Roberson
and Schwertassek in [6] and used by Brandl, Johanni, and Otter in [5]. They are similar in many

ways to those described by Featherstone in [9] for robot dynamics, although there are a few minor
differences. As in each of these, spatial notation will be used to develop the dynamic equations for

the chains and reference member. With spatial notation, velocity, acceleration, and force vectors are

all 6 x 1 column vectors, where each incorporates the appropriate linear and angular components. In

this paper, the spatial velocity of the reference member, vo, is written:

v0= [ (0:0)x (0,0), (0,0)z (v0) (v0) (1)

where (w0)x, (w0)y, and (w0)= are the components of the angular velocity of the reference member

about _, _r, and _,, respectively, usually resolved in the reference member frame (frame 0) or an inertial
coordinate system. The three components, (v0)_, (Vo)_, and (v0)z, represent the linear velocity of the

coordinate origin of frame 0. Similarly, the spatial acceleration of the reference member is expressed

as:

8O= [ ( 0)z (a0)x (a0) ]T, (2)

where the individual components now correspond to resolved angular and linear acceleration vectors.

Spatial force vectors have a corresponding structure:

fk= [(nk)_ (nk)_ (nk)z (fk)x (fk)_ (fk)z ]T, (3)

where, in this case, fk will be used to represent the spatial force exerted on the reference member

by chain k. The first three components, (nk)x, (nk)y, and (nk)z, represent the elements of a three-
dimensional moment vector, while (fk),, and are the elements of a thrc -dimensional
force vector.
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In general, the transformation of a spatial velocity or acceleration vector from one coordinate system
to another one may be accomplished by the following spatial multiplication [9]:

Jp= (4)

where /p is the vector expressed with respect to the ith coordinate system, Jp is the same vector

expressed with respect to the jth coordinate system, and Jxi is the 6 × 6 spatial transformation
matrix. This spatial transformation is defined as follows:

JX/=[ JAi O ]JA f,y ' (5)

where JA/ is the 3 × 3 rotation transformation between the two coordinate systems, and bj is the

3 × 1 position vector from the origin of frame i to the origin of frame j, with components expressed
in frame i. The 3 × 3 matrix, l_j, is an anti-symmetric matrix defined by the rule:

_: = c3 0 -cl . (6)
-c2 cl 0

In spatial notation, inertia matrices are also expressed as 6 × 6 matrices. An inertia matrix may be

defined for each individual link of a chain, as well as the reference member, in its own corresponding
coordinate system. For the reference member, this matrix, I0, is represented as follows:

Io= hor Mo ' (7)

where Mo is a 3 x 3 diagonal matrix of the mass of the reference member, and Io is the 3 x 3 moment

of inertia tensor at the origin of coordinate frame 0. The matrix Io is symmetric and positive definite,
but not necessarily diagonal. The 3 x 3 matrix, ho, is equal to mo_o, where rno is the mass of the

reference member, and so is the position vector of the center of gravity of the reference member from

the coordinate origin of frame 0. Because Io and so are defined in coordinate system 0, the matrix
Io is constant.

To include general joints and contacts with multiple degrees of freedom in a multibody system, an

extended model of the interconnections and interactions between individual bodies of that system is
required. In this paper, the general joint model of Roberson and Schwertassek [6] is used for this
purpose. This model is also used by Brandl, Johanni, and Otter in [5].

Briefly, each interconnection and/or interaction between two bodies in a simple closed-chain mecha-

nism, hereafter referred to as a "general joint", is described in terms of two orthogonal vector spaces,
¢ and ¢% The matrix ¢ is of dimension 6 x n, where n represents the number of degrees of freedom

of the general joint, and it has full column rank. It represents the free modes of the joint, and its

columns make up a basis for this free vector space. We will refer to ¢ as the motion space of the
general joint. The matrix ¢c, which is 6 × (6 - n) and also of full rank, represents the constrained

modes of the general joint. It is orthogonal to ¢, and may be called the constraint space of the joint.
Both ¢ and ¢c are usually resolved in the joint frame, and thus, they are both constant.

III. Dynamic Properties of Individual Chains and Reference Member

Each chain in a simple closed-chain mechanism is governed by the dynamic equations of motion for
a single chain. For chain k, k = 1,..., m, these are:
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= + ck + Gk + J[ fk, (8)

where

_rk

qk, elk,/_k =

Hk =

Ck :

Gk =

Jk :

and fk is the (6 x 1)

Ark X 1 applied general joint torque/force vector,

Ark X 1 general joint position, rate, and acceleration vectors,

Ark X Ark joint space inertia matrix,

Ark X Nk centripetal/Coriolis matrix,

Ark × 1 gravity vector,

6 x Ark Jacobian matrix,

spatial force vector exerted by chain k on the reference member.

Note that Hk, Ck, Gk, and Jk are functions only of the general joint position and rate vectors, qk

and qk, respectively. Recall also that the "base" of each chain is the support surface, and the "tip"
of each chain touches the reference member. The components of qk and rk correspond to the general

joints of each chain, starting with the joint between link 1 and the support surface and ending with

the joint preceding link N. The basic unknowns in Eq. (8) axe the general joint accelerations, qk,
and the components of the force vector, fk, in the constrained directions of the general joint at the

tip of chain k.

We may use the dynamic equations of motion to partition the joint acceleration and spatial tip
acceleration vectors of each chain into the difference of two terms, one known and one unknown. For

each chain, we may write [11]:

ctk = (tlk)o_,_ -- (H_-lJkT)fk, (9)

= ((tk)oVcn -- ak fk, (10)

where ((tk)open is the vector of joint accelerations for chain k in an open, unconstrained configuration

(fk = 0), and fZk is a function of the joint positions for chain k. Likewise, for xk, the tip acceleration
for each chain:

irk = (i_k)op_n - (Jk H;1JT)fk, (11)

= (Xk)open - Ak-ifk, (12)

where (Xk)op_,_ is the spatial tip acceleration vector for chain k in an open, unconstrained configu-

ration, and A_-1 is the inverse operational space inertia matrix for chain k, defined at the tip of the

chain [7,11].

The open-chain terms, (_tk)op_,_ a_d (fCk)o_,_n, are completely defined for each chain given the present

state joint positions and rates, qk and elk, the applied joint torques/forces in the free directions, rk,
and the motion of the support surface. An appropriate open-chain Direct Dynamics algorithm may

be used to calculate these terms. The O(N) recursive algorithms of [5,10] are very efficient for this

computation, and the linear order of computation is highly desirable. Because the joint positions

are known, f_k and Ak 1 are also defined. Efficient algorilhms for flk and Ak I for a single chain are

derived in [11], including an O(N) recursive algorithm which is the most efficient for N >_ 6.

The dynamic behavior of the reference member may be described using a spatial force balance

equation for that body. The sum of the spatial forces exerted by each chain on the reference member

and any other external spatial forces (including gravity) are equal to the resultant force on the
reference member. Using spatial notation, we may write the force balance equation as follows:
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m

Fo = _°fk + go, (13)
k=l

where

F0

°fk

and

go

= 6 x 1 resultant spatial force vector applied to the reference member,

= 6 x 1 spatial force vector applied by chain k to the reference member,

= 6 x 1 external spatial force vector applied to the reference member

(including gravity).

Each force term in Eq. (13) is defined with respect to the coordinate frame attached to the reference

member (frame 0). Applying the basic Newton-Euler equations, we may also write the resultant

vector, Fo, as follows:

Fo = Ioao+voXIovo,

= Io ao + bo,

where

Io =

ao =

V 0 ----

(14)

(15)

6 x 6 spatial inertia of the reference member,

6 x 1 spatial acceleration of the reference member,

6 x 1 spatial velocity of the reference member.

Both vo and ao refer to the motion of the coordinate origin of frame 0. The spatial inertia matrix,

I0, is also defined at this point, and it is known and constant. Because Vo is given for the present
state, the velocity-dependent term, b0, is known. If we combine Eqs. (13) and (15), we finally obtain

the following dynamic equation for the reference member:

m

°fk + go = I0ao + b0. (16)
k=l

In this equation, the basic unknowns are a0 and the components of °fk in the constrained directions

of the general joint at the tip of chain k.

IV. Multiple Chain Algorithm

In developing an efficient algorithm for the dynamic simulation of simple closed-chain mechanisms,

we are naturally led to consider the relationship between the physical structure of the robotic sys-

tem and the computational structure of the desired algorithm. Intuitively, it seems apparent that

the structural parallelism present in a simple closed-chain mechanism should lead to computational

parallelism in the solution of the Direct Dynamics problem for that mechanism.

More specifically, in a simple closed-chain mechanism, the m actuated chains act on the reference

member in parallel, and their motion is coupled with that of the reference member. If the reference
member is removed, the chains may function independently. Computationally, the physical removal

of the reference member corresponds to solving for the forces which are exerted on it by each chain.
Once these forces are known, the system is equivalent to a group of independent chains with known

tip forces. The joint accelerations may then be computed for each chain separately. Given enough

processors (one per chain), the computations for each chain may be carried out in parallel.
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We will illustrate the basic methodology of the new simulation algorithm by first examining a simple

special case. Consider m manipulators rigidly grasping a common object. Each manipulator has six

degrees of freedom, and no chain is in a singular position. For simplicity, we will express all of the

relevant equations in absolute coordinates. Because each chain tip is rigidly attached to the reference
member, we may write:

Jck = ao (17)

for each chain k, k = 1,...,m. Thus, the operational space dynamic equation for each chain, as
given in Eq. (12), takes the form:

ao = (:Xk)open -- Ak-lfk. (18)

Because no chain is in a singular position, and each chain has a full six degrees of freedom, Ak is
defined [11]. We may, therefore, solve for the spatial tip force exerted by chain k on the reference
member, fk, as follows:

fk = hk [(Xk)op_, - a0]. (19)

With this equation we have established an explicit relationship between the spatial tip force, fk, and

the spatial acceleration of the reference member, a0. This expression may be used in the reference
member dynamic equation, given in Eq. (16), to obtain:

m

- a0]= Io 0 + b0 - So.
k=l

The only unknown in Eq (20) is _, the spatial acceleration of the reference member.
terms, we may write:

[51 [5 ]I0+ Ak ao= Ak(xk)op¢,_-bo+go •
k=l J Lk--1

(20)

Collecting

(21)

We may now solve for ao from this linear system of algebraic equations using any linear system

solver. Note that the characteristic matrix is just the sum of the operational space inertia matrices

of the individual chains and reference member, and is only 6 × 6. With ao known, we may also
solve explicitly for the spatial tip force fk, k -- 1,... ,m, using Eq. (19). Thus, the motion of the

reference member and the spatial force exerted at the tip of each chain are completely defined. The

simple closed-chain mechanism is effectively decoupled. Each manipulator may now be treated as

an independent chain with a known spatial tip force. The joint accelerations for each chain may be

computed separately using an appropriate Direct Dynamics algorithm and then integrated to obtain
the next state.

The method outlined above is quite straightforward. Of course, the illustrated example represents a
special case. We will now develop a similar approach for a general simple closed-chain mechanism.

Consider a mechanism with m chains, each with an arbitrary number of degrees of freedom, N. The

interaction between each chain tip and the reference member is arbitrary and will be modelled using
the general joint model of [6]. To begin, we will derive an explicit relationship between the spatial

acceleration of each chain tip and the spatial acceleration of the reference member. The spatial

acceleration of the tip of chain k is denoted by Xk. The relative spatial acceleration between the tip
of chain k and the reference member, _, resolved in the orthogonal vector spaces of the general joint
between them, may be written:

= (¢)k-k + (22)



where (¢)k and (¢c)k axe the motion space and constraint space of the general joint at the tip of chain
k, respectively. The quantities ak and a_ are the corresponding components of relative acceleration

in the free and constrained directions. For each chain, (¢)k, (CO)k, and a_ axe known, while ak is

unknown. The sum of xk and _ is just the spatial acceleration of the reference member on the far
side of the general joint between it and chain k, a_. Thus, we may write:

a_ = xk+x_, (23)

= xk + (¢)k cek + (¢c)k a_. (24)

We may also express a0k in terms of the spatial acceleration of the reference member, ao, as follows:

= x0_-o + (0_, (25)

where X0k - NX0k is the spatial transformation between coordinate frame 0 and the coordinate frame
associated with the general joint at the tip of chain k. The quantity (ok is the 6 × 1 bias acceleration

vector which is a function of the position and spatial velocity of the reference member. Because the

present state of the entire system is given, both X0k and (ok are known.

Equating the two expressions above for a_, we obtain the following:

_k + (¢)k-k + (¢_)k-7,= x0k-o + (ok. (26)

This equation matches the spatial accelerations at the coupling point between chain k and the refer-

ence member, giving an explicit relationship between xt¢ and a0 when the coupling is arbitrary. The

basic unknowns in Eq. (26) are xk, ak, and ao. All other vectors and matrices may be computed
rather simply from the initial information given for the simulation problem.

To decouple the chains and the reference member, we need an explicit mathematical relationship

between the spatial force exerted by chain k on the reference member, fk, and the spatial acceleration

of the reference member, ao. Equation (26) relates the spatial acceleration of the reference member
and the spatial acceleration of the tip of chain k. We may eliminate ak, the unknown components

of the relative acceleration, by projecting Eq. (26) onto the constraint space of the corresponding

general joint as follows:

(¢°)_[_k+ (_)k_ + (¢°)__7,]= (¢°)_ [Xo__o+ _'_]. (27)

By definition [11]:

(¢_)_(¢h = o, (28)

and

(¢_)T (¢e)k = 1. (29)

Thus, we may write:

_k+._ = (_o)T[Xo__0+ g].(¢°)_ (30)

Equation (12) defines xk in terms of the desired force vector, fk. If we combine Eqs. (12) and (30),
we obtain:

(¢c)T [(_k)o,_n -- A;lfk] = (¢c)T [Xokao + (ok] _ a_, (31)

or
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[(¢c)T A;1] fk = [a_ -(¢c)r _0k+ (e,)T (_k)op,_] --[(**)kr X0k] aO. (32)

The first bracketed term on the right side of Eq. (32) is completely known. The only unknowns in

this equation are the constraint components of the force vector, fk, and the spatial acceleration, a0.

We may now pursue an explicit relationship between these two vectors.

Like the relative acceleration vector, fk may also be resolved in the orthogonal vector spaces of the

general joint at the tip of chain k as follows:

fk = (¢)k hk + (¢_)k hl, (33)

where hk is the vector of known force components in the free directions, and h_ is the vector of

unknown force components in the constrained directions. Combining Eqs. (32) and (33), we obtain:

(¢_)T Ak, [(¢)k hk + (¢_)k hl] = [a_ -(¢c)T _0k + (¢c)T (_k)op_,,]

_ [(¢_)T X0k] a0. (34)

If the spatial acceleration of the reference member is known, we may find an explicit solution for the
unknown force components at the tip of chain k from the following set of linear algebraic equations:

- x0 .0,
: - x0 .o,

[(¢c)T A;l(¢C)k] h_

(35)

(36)

where Sk is known. Even when a0 is unknown, we may still find a solution for h_, in terms of the

unknown ao. The solution will have the following form:

h_ = Mk [Sk--(¢':)TX0ka0], (37)

= MkSk--[Mk(¢_)Tx0 k] ao. (38)

If (nc)k is the number of degrees of constraint for the general joint at the tip of chain k, then Mk is
the (nc)k × (nc)k transformation matrix which solves for h i. By carefully considering the rank of the
coefficient matrix, this general solution can still be used for a chain in a singular position or a chain

with less than six original degrees of freedom [11]. This solution procedure requires O[(n_)_] scalar

operations.

Note that if chain k is rigidly grasping the reference member, then the constraint space for this

general joint, (Co)k, is the 6 x 6 identity matrix. In this case, also note that a_ and ha are identically
zero for each chain. If chain k has six degrees of freedom and is not in a singular position, then Mk

will be exactly equal to Ak, the operational space inertia matrix for chain k, and the solution for h i

will be:

h i : Ak [Sk- Xokao] • (39)

This solution corresponds to the simple example discussed at the beginning of this section, but now

expressed in local coordinates.
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Given the general solution for h_ in Eq. (38), the force vector, fk, may now be written:

fk = (¢)k ha + (¢C)kh_,

= [(¢)khk+(¢C)kMkSk]-- [(¢C)kMk(¢c)Tx0 k] a0,

= Pk - Rk ao,

(40)

(41)

(42)

where Pk and Rk are of dimension 6 x 1 and 6 x 6, respectively, and both may be computed from
known quantities. We now have an explicit equation relating the force vector exerted by chain k
and the spatial acceleration of the reference member. We may combine this information with the

dynamic equation for the reference member to solve for a0 explicitly.

The dynamic equation for the reference member given in Eq. (16) may be rewritten as follows:

E(X0k)Tfk -I-go = Ioao + bo. (43)
k--1

where fk is the spatial force exerted by chain k on the reference member, expressed in the coordinate

frame of the general joint at the chain tip. If the expression for fk in Eq. (42) is used in Eq. (43), we
obtain:

E(X0k)T(Pk -- Rkao) ----Ioao + bo - go- (44)
k=l

Summing like terms, we may write:

I0+ X ao= X -b0+g0 , (45)
k=l

or, expanding Rk,

I0 -{- E(xk)T(¢C)k Mk (¢_) T (X0k) a0 = (x0k)Tpk -- b0 + go • (46)
k----1

In Eq. (46), the 6 x 1 spatial acceleration vector of the reference member, ao, is the only unknown.

We may find a solution for a0 from the given set of linear algebraic equations using any efficient
linear system solver. Because the required system solution always involves a 6 × 6 coefficient matrix,
the computational cost of solving for a0 is constant.

The coefficient matrix of a0 in Eq. (46) represents the combined inertial properties of all the chains

and the reference member. The inertial properties of each chain are first projected to the tip of that

chain by computing the inverse operational space inertia matrix, Ak 1. Along the free directions of
the general joint which connects the chain tip and the reference member, the projected inertia of the

chain is not felt by the reference member. Along the constrained directions of the joint, however, the

corresponding components of A_ 1 are reflected across to the reference member. These components,
spatially transformed to the coordinate origin of frame 0, are combined with the spatial inertia of
the reference member, I0. This combination represents the effective operational space inertia of the

simple closed-chain mechanism defined at the coordinate origin of frame 0. It is the effective inertia

"felt" by the reference member in the present state. The bracketed term on the right side of Eq. (46)
represents the spatial forces which act on the reference member at the given instant.

Once the spatial acceleration of the reference member is known, the spatial force vector applied by
chain k to the reference member is defined by Eq. (42). That is, with a0 given, we may compute fk
as follows:
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fk = Pk -- Rk ao. (47)

Recall that fk is defined with respect to the coordinate frame of the general joint between chain k

and the reference member. The explicit knowledge of fk allows us to treat chain k as an independent

chain with a known tip force. We may now solve for the general closed-chain joint accelerations for

chain k using Eq. (10), repeated here for convenience:

Clk = (qk)or_,_ - _k fk. (48)

The application of Eq. (48) to every actuated chain in the simple closed-chain mechanism results in a

complete solution to the Direct Dynamics problem for this robotic system. The next state positions
and velocities may be computed by integrating the appropriate quantities for each chain and the

reference member. As discussed in [11], small amounts of negative position and rate feedback may

be employed to counteract the drift which is a result of the integration process, and which would
violate the kinematic constraints.

The algorithm developed here for simple closed-chain mechanisms may be presented as a series of

five steps. They are as follows:

1. The Open Chain Solution,

2. Calculation of the Spatial Acceleration of the Reference Member,

3. Calculation of the Spatial Chain Tip Forces,

4. Calculation of the Closed-Chain Joint Accelerations,

5. Integration for the Next State.

The fundamentai computations required in each of these steps are summarized in Table 1. In Step 1,

the Direct Dynamics problem is solved for each chain of the mechanism assuming that the reference
member has been removed and each chain is in an open, unconstrained state. The general open-chain

acceleration vectors, (qk)ope,, and (xk)ope,_, are computed for each chain, along with the position-

dependent matrices, 12j, and Ak 1. In Step 2, Eq. (45) is used to find an explicit solution for ao,

the spatial acceleration of the reference member, via linear system solution. The quantities (Mk Sk)

and [Mk (¢c)T X0k], required for both Pk and Irk, are computed in the determination of the explicit

relationship between h_ and a0. This relationship is found by linear system solution using Eq. (36),
with the solution taking the form of Eq. (38). In Step 3, this solution is used in Eq. (47) to solve
for the spatial force vector exerted on the reference member by each chain. In Step 4, the general

closed-chain joint accelerations are computed for each chain using Eq. (48), given the spatial tip force
vector. In Step 5, the appropriate rates and accelerations are integrated to obtain the next state

positions and rates for the system.

Note that the first step may be carried out for all chains in parallel, if enough processors are available

(one per chain). Once the second step is complete and a0 is known, the third, fourth, and fifth
steps may also be carried out for all chains simultaneously. Thus, taking advantage of the structural

parallelism inherent in the simple closed-chain system has led to parallelism in the computational

structure of the simulation algorithm.

V. Computational Requirements

We will now consider the computationai requirements of the dynamic simulation algorithm for simple

closed-chain mechanisms. First, the number of scalar operations required for each chain of the
mechanism will be tabulated, followed by the number of operations required to compute the spatial
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Table1: Dynamic Simulation Algorithm for Simple Closed-Chain Mechanisms

Given: ag, hk, (Co)k, (¢)k, and with

Xok, bo, go, (ok determined from the reference member state;

Step 1.

Step 2.

with

Compute (/tk)op_n, (f(k)o_n, f_k, and A_'I; k = 1,... ,m.

Solve for ao:

m

+  (Xo ) Rk
k----1

a 0 ]Tpk -- bo + go ,

Pk = [(¢)khk + (¢C)kMkSk],

Sk = ag - (¢,)T [¢o_ _ (ik)_,,,, + A_" (_b)k hk],

and where (Mk Sk) and [Mk (¢c)T X_] are determined by the solution of:

(M_ "1) h_, = [(¢c)r A_I (¢_)k] hg = Sk -- [(¢e)r Xok] ao.

Step 3.

fk

Step 4.

Step 5.

Solve for fk; k = 1,..., m:

= Pk - Rk a0.

Solve for/ik; k = 1,..., m:

= (ilk)opt. - fzkfk.

Integrate to obtain the next state positions and rates for the system.
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Table2: ComputationsPerChainin the SimpleClosed-ChainDynamicSimulationAlgorithm

#Mult. _Add.

Calculation #Mult. #Add. (N = 6, nc = 3) (N -- 6, ne = 3)

qopen , X°Pen

_,A -1

P,R

xTp,xTR

f

Total:

250N- 182

400N - 621

_ne 3 + 62Xn_2 + 53kne + 26

36nc + 20

36

6N

656N -- 767

+ 6½., + +46)

220N- 167

320N- 528

}no 3 + 6he 2 + _ne + 10

36n¢ -- 24

36

6N

546N - 659

q-(_nc 3 "b6ne _: -b36_nc -- 14)

1318

1779

105

128

36

36

3402

1153

1392

71

84

36

36

2772

acceleration of the reference member. The computational complexity of the complete algorithm will

then be discussed, and the parallel implementation of this algorithm will be considered.

Table 2 lists the number of scalar operations (multiplications, additions) required in the simulation

algorithm for each chain of a simple closed-chain mechanism. The operations are tabulated for the

case of an N degree-of-freedom serial-link chain with simple revolute and/or prismatic joints only.

The O(N) Direct Dynamics algorithm of [5] is used to compute the open-chain terms, iiopen and

5topen. The O(N) Force Propagation Method of [11] is used to compute f_ and A -1. All _ior*n, _£open,

It, and A -1 are computed in Step 1 of the simulation algorithm.

In Step 2 of the simulation algorithm, the spatial acceleration of the reference member is calculated
using Eq. (45). For this task, xTp and XTR must be computed for each chain. The number of

operations required to compute P, It, xTp, and xTIt are also listed in Table 2. In this case, the

number of operations is a function of the number of degrees of constraint at the general joint between
the chain tip and the reference member (no). This number can never be greater than six. The

computational complexity of these calculations is O(n 3) due to the linear system solution required

in the computation of both P and R (see Table 1).

The spatial force vector, f, exerted by each chain on the reference member, and the closed-chain joint

accelerations for the chain, iil, are calculated in Steps 3 and 4 of the simulation algorithm, respectively.

The appropriate equations are given in Table 1. The operations required to calculate these vectors

complete the table. The operations required for the special case of N = 6 and nc = 3 are given in
the last two columns of Table 2. This value of nc could correspond to a hard point contact between

a manipulator tip and surface of a load object when the tip is not slipping.

Given the computations required for each individual chain, the number of scalar operations needed

to compute the spatial acceleration of the reference member, ao, is given in Table 3. Equation (45)
is used to obtain the solution, which requires O(m) spatial additions and a single 6 x 6 symmetric

linear system solution. Thus, the number of operations required for a0 is a function only of m, the

number of chains in the simple closed-chain mechanism. The example of three chains (m = 3) is

given in the last two columns of this table.

To determine the total number of scalar operations required to simulate the entire simple closed-
chain mechanism, the number of operations required for a single chain is simply multiplied by m,
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Table3: Computationsfor the SpatialAccelerationof the ReferenceMember

#Mult. #Add.

Calculation #Mult. #Add. (m = 3) (m = 3)

ao 86 27m + 71 86 152

the number of chains, and added to the computations required for a0 for the same number of chains.

Thus, the computational complexity of the complete simulation algorithm is O(mN) for a given value
of nc _< 6.

The total computational complexity discussed in the previous section only considered the execution of
the simulation algorithm on a single processor. In order to speed up the simulation, parallel processing

may be investigated. If a single processor is used for the entire system of m chains, the computational

complexity of the simulation algorithm is O(mN) for a given nc _< 6. Given a0, all computations for
each chain may be carried out independently. Thus, if m processors are available, the computational

tasks associated with each chain may be performed in parallel, and the computational complexity

of the operations required for the m chains may be reduced to O(N). Of_:ourse, the computations
required to compute a0 must also be considered. These operations may also be implemented in

parallel on the m available processors. Equation (45) requires O(m) spatial additions to compute a0.

On (m + 1)/2 parallel processors, this task may be carried out in O(log2m+ 1) operations by using
the recursive doubling approach [12]. Thus, on m parallel processors, the computational complexity

of the entire dynamic simulation algorithm may be reduced to O(N) + O(log2m+ 1).

VI. Summary and Conclusions

In this paper, a genera] and efficient dynamic simulation algorithm for simple closed-chain mechanisms

was derived. The algorithm is applicable to both Type 0 and Type 1 mechanisms. Both types of
mechanisms are modelled in a convenient and general manner through the use of the general joint

concept. The operational space inertia matrix of each chain is used to project the dynamic properties

of the chain to its tip where it is coupled to the reference member. By combining the operational

space inertia of each chain with the model of the general joint at each chain tip, a solution may be
found for the spatial acceleration of the reference member and the spatial force vector exerted on it

by each chain. Once the force vectors are completely defined, the system is effectively decoupled,

and the joint accelerations for each chain may be computed separately.

The computational complexity of the new simulation algorithm is O(mN) when implemented on a
single processor. The linear dependence on N is a significant improvement over previous simulation

algorithms such as that presented in [1]. The computational complexity of the new algorithm may

be further reduced to O(N) + O(log2m+ 1) if it is implemented on m processors in parallel.
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